Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8471

$ \sup \{|x_n| \mid n\in \mathbb N \}= \lim_{n\to \infty} (\lim_{p\to \infty}(\sum_{k=1}^n |x_k|^p)^{1/p}) $

$
0
0

I have to prove that for a bounded sequence $ {x_n}$

$$ \sup \{|x_n| \mid n\in \mathbb N \}= \lim_{n\to \infty} (\lim_{p\to \infty}(\sum_{k=1}^n |x_k|^p)^{1/p}) $$

I know that$$ \sup \{|x_n| \mid n\in \mathbb N \}= \lim_{p\to \infty}(\sum_{k=1}^\infty |x_k|^p)^{1/p}$$

if it is correct to switch the order of these limits, I can ger the desired result directly; Since:

$$ \lim_{n\to \infty} (\lim_{n\to \infty}(\sum_{k=1}^n |x_k|^p)^{1/p})=\lim_{p\to \infty} (\lim_{n\to \infty}\sum_{k=1}^n |x_k|^p)^{1/p} =\lim_{p\to \infty}(\sum_{k=1}^\infty |x_k|^p)^{1/p}=\sup \{|x_n| \mid n\in \mathbb N \}$$

But is it correct? Can we switch the order of these limits in general? or is there any condition for that?


Viewing all articles
Browse latest Browse all 8471

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>