Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9320

Uniform Convergence using Abel's test for a series based on convergence of a series

$
0
0

A problem from uniform convergence of series:$$\sum_{i=1}^\infty a_n$$ is convergent then show that $$\sum_{i=1}^\infty \frac {nx^n(1-x)}{1+x^n} a_n$$ and $$\sum_{i=1}^\infty \frac {2nx^n(1-x)}{1+x^{2n}} a_n$$ are uniformly convergent when $x \in\ [0,1]$.


Viewing all articles
Browse latest Browse all 9320

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>