Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9994

Let S ⊂ R be a nonempty bounded set. Then there exist monotone sequences ${x_n}$ and ${y_n}$ such that $x_n$, $y_n$ ∈ $S$

$
0
0

Let S ⊂ R be a nonempty bounded set. Then there exist monotone sequences ${x_n}$ and ${y_n}$ such that $x_n$, $y_n$ ∈ $S$ and $\sup S = \lim_{n→∞} x_n$ and $\inf S = \lim_{n→∞} y_n$

How can I prove this ..?


Viewing all articles
Browse latest Browse all 9994

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>