Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9736

Norm of bounded operator on a complex Hilbert space.

$
0
0

It is fairly easy to show that for a bounded linear operator $T$ on a Hilbert space $H$$$\|T\|=\sup_{\|x\|=1,\|y\|=1}|\langle y, Tx \rangle |.$$If $H$ is a complex Hilbert space, can you show that$$\|T\|=\sup_{\|x\|=1}|\langle x, Tx \rangle |\;?$$


Viewing all articles
Browse latest Browse all 9736

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>