Let $x_1=2,x_{n+1}=\ln|x_n|$, prove $$z=\lim_{n\rightarrow+\infty}\frac{1}{n}\sum_{k=1}^nx_k$$exist and $z=\ln(-z)$.
↧
Let $x_1=2,x_{n+1}=\ln|x_n|$, prove $$z=\lim_{n\rightarrow+\infty}\frac{1}{n}\sum_{k=1}^nx_k$$exist and $z=\ln(-z)$.