Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8465

How to show that $\int _0^{\infty}x^{4n+3}\exp(-x)\sin(x)dx=0$ for $n\in \mathbb{N}$. [duplicate]

$
0
0

I want show that $\int _0^{\infty}x^{4n+3}\exp(-x)\sin(x)dx=0$ for $n\in \mathbb{N}$.

How can I prove this?Do I need to use $\sin(x)=\Im(\exp(ix))$ and complex integral?

I want to know how to prove it well.


Viewing all articles
Browse latest Browse all 8465

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>