Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9224

About adjoint of densely defined linear operator

$
0
0

Let's consider $\mathfrak{H}$ be a Hilbert space, a densely defined linear operator on $\mathfrak{H}$ is an ordered pair $(T,D_T)$, where $D_T$ is a dense linear subspace of $\mathfrak{h}$, and $T:D_T\rightarrow\mathfrak{h}$ is a linear transformation.enter image description here

In the text, it says using Rieze representation theorem, for $g\in D_T*$ , there exists ''unique'' element $T^*g\in\mathfrak{h}$ such that $\langle Tf,g\rangle=\langle f,T^*g\rangle$.

I don't know why it should be unique.

Thank for your help!


Viewing all articles
Browse latest Browse all 9224

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>