Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9146

sequence of integral of a function

$
0
0

Let $a_n=\frac{1}{n}\int_{0}^{n}\frac{log(2+x)}{\sqrt{1+x}}dx$ then i want to show $\lim_{n\to\infty}a_n\rightarrow 0$.

i assume $b_n=\int_{n-1}^{n}\frac{log(2+x)}{\sqrt{1+x}}dx$ and $a_n=\frac{b_1+b_2\cdots +b_n}{n},$then $\lim_{n\to\infty}a_n= \lim_{n\to\infty}b_n$ but then unable to compute $b_n$


Viewing all articles
Browse latest Browse all 9146

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>