Suppose that $a_n>0$, $n\geq1$ and that $\displaystyle\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=L$. Prove $\displaystyle\lim_{n\rightarrow\infty}\sqrt[n]{a_n}=L$
To resolve this problem, I solved this one
Suppose that $a_n>0$, $n\geq1$ and that $\displaystyle\lim_{n\rightarrow\infty}a_n=L$. Prove that $\displaystyle\lim_{n\rightarrow\infty}\sqrt[n]{a_1\cdots a_n}=L$.
Here is my progess
$$\lim \sqrt[n]{a_n}= \lim \sqrt[n]{\frac{a_n}{a_{n-1}}\frac{a_{n-1}}{a_{n-2}}\cdots \frac{a_2}{a_1}a_1}=\lim \sqrt[n]{\frac{a_n}{a_{n-1}}\frac{a_{n-1}}{a_{n-2}}\cdots \frac{a_2}{a_1}}\lim\sqrt[n]{a_1}$$
Let $b_n$ be a sequence defined by $$b_n=\frac{a_{n+1}}{a_n}$$
By hypotesis, $\lim b_n=L$. The exercise above leads to
$$\lim \sqrt[n]{a_n}= L\lim\sqrt[n]{a_1}$$.
But what about $\lim\sqrt[n]{a_1}$?