Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8465

A problem on finding the limit of the sum

$
0
0

$$u_{n} = \frac{1}{1\cdot n} + \frac{1}{2\cdot(n-1)} + \frac{1}{3\cdot(n-2)} + \dots + \frac{1}{n\cdot1}.$$

Show that, $\lim_{n\rightarrow\infty} u_n = 0$.

The only approach I can see is either finding $nu_{n}$ or $(n+1)u_{n}$ and seeing that:

$$(n+1) \ u_{n+1} = (1+\frac{1}{n}) + (\frac{1}{2} + \frac{1}{n-1}) + \dots + (\frac{1}{n} + 1).$$

Please help me understand how I can solve this problem using this, or any method of your preference! Thank you so much!!


Viewing all articles
Browse latest Browse all 8465

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>