Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9397

Convergence in $L^p$ norm implies pointwise convergence almost everywhere? [duplicate]

$
0
0

Fix a real number $1\leq p<\infty$.

Is it true that if functions $f\in L^p(\mathbb{R})$ and $f_1,f_2,\ldots\in L^p(\mathbb{R})$ are such that $\|f_n-f\|_p\rightarrow 0$ as $n\rightarrow \infty$, then $f_n(y)\rightarrow f(y)$ as $n\rightarrow\infty$ for almost every $y\in\mathbb{R}$?

It really shouldn't be true, but what would be a counterexample?


Viewing all articles
Browse latest Browse all 9397

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>