Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9262

Variant of Cramer's Large Deviation Theorem

$
0
0

Let $\Lambda(t) = \log \mathbb{E}[\exp(tX_1)]$ and define $\Lambda^*(x) := \sup_{t\in\mathbb{R}} (tx - \Lambda(t))$. Then according to Cramer's theorem,

$$\lim_{n \to \infty} \frac{1}{n} \log \left( P \left( \sum_{i=1}^n X_i \geq nx \right) \right) = -\Lambda^*(x).$$

Is there a similar identity for$$\lim_{n \to \infty} \frac{1}{n} \log \left( P \left( \sum_{i=1}^n X_i \geq (n+k)x \right) \right)$$where $k$ is constant?


Viewing all articles
Browse latest Browse all 9262

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>