Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9155

Is this proof of the absolute convergence test for double sums correct?

$
0
0

Theorem:$$(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}| \space \text{converges}) \implies (\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} \space \text{converges})$$

Proof:

Let $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|=L$. Then, for $s_{nn}=\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|$, $\lim{s_{nn}}=L$. By the Cauchy criterion, we have that for every $\epsilon>0$, there exists an $N$ so that if $m, n > N$ and $m > n$, $|s_{mm}-s_{nn}|<\epsilon$. Thus $$|a_{(n+1)(n+1)}|+...+|a_{(n+1)m}|+...+|a_{m(n+1)}|+...+|a_{mm}|<\epsilon.$$

By the triangle inequality, $$|a_{(n+1)(n+1)}+...+a_{(n+1)m}+...+a_{m(n+1)}+...+a_{mm}|<\epsilon$$

and convergence is guaranteed for $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}$.

P.S. I am slightly suspicious of this proof (it seems to only prove that a subsequence of the partial sums of $a_{ij}$ converges), but I'm not sure.


Viewing all articles
Browse latest Browse all 9155

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>