Quantcast
Viewing all articles
Browse latest Browse all 9155

Simplifying a multivariable hypergeometric function

The confluent multivariable Luaricella's hypergeometric function is defined as

$$\Phi^{(n)}_2\left(b_1,\cdots,b_n;c;x_1,\cdots,x_n\right) = \sum_{m_1=0,\cdots,m_n=0}^{\infty}\frac{\left(b_1\right)_{m_1}\cdots\left(b_n\right)_{m_n}}{\left(c\right)_{m_1+\cdots+m_n}}\frac{x^{m_1}}{m_1!}\cdots \frac{x^{m_n}}{m_n!}$$

Where $(a)_m = \frac{\Gamma\left(a+m\right)}{\Gamma\left(a\right)} = a(a+1)\cdots (a+m-1)$ is the Pochhammer symbol for writing consecutive products. I am wondering is it possible to simplify the product

$$x^{n}\Phi^{(n)}_2\left(b_1,\cdots,b_n;c;\alpha_1 x,\cdots,\alpha_n x\right) =\\ \frac{1}{\prod_{i=1}^{n}\alpha_i} \sum_{m_1=0,\cdots,m_n=0}^{\infty}\frac{\left(b_1\right)_{m_1}\cdots\left(b_n\right)_{m_n}}{\left(c\right)_{m_1+\cdots+m_n}}\frac{(\alpha_1 x)^{m_1+1}}{m_1!}\cdots \frac{(\alpha_n x)^{m_n+1}}{m_n!}$$

and write it in terms of $\Phi^{(n)}_2\left(b_1,\cdots,b_n;c;\alpha_1 x,\cdots,\alpha_n x\right)$ (or its derivatives)?

Any hints are appreciated!

===========================Edit=============================

We can further simplify the expression above to reach

$$\frac{1}{\prod_{i=1}^{n}\alpha_i} \sum_{m_1=0,\cdots,m_n=0}^{\infty}\frac{\left(b_1\right)_{m_1}\cdots\left(b_n\right)_{m_n}}{\left(c\right)_{m_1+\cdots+m_n}}\frac{(\alpha_1 x)^{m_1+1}}{m_1!}\cdots \frac{(\alpha_n x)^{m_n+1}}{m_n!}\\= \frac{(c-n)_{n}}{\prod_{i=1}^{n}(b_i-1)\alpha_i} \sum_{m_1=0,\cdots,m_n=0}^{\infty}\frac{\left(b_1-1\right)_{m_1+1}\cdots\left(b_n-1\right)_{m_n+1}}{\left(c-n\right)_{(m_1+1)+\cdots+(m_n+1)}}\frac{(\alpha_1 x)^{m_1+1}}{m_1!}\cdots \frac{(\alpha_n x)^{m_n+1}}{m_n!}\\$$

The only problem left is factorials in the denominator!


Viewing all articles
Browse latest Browse all 9155

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>