Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9589

Simple counterexample for if $\lim_{x\to\infty}f(x)=\infty$ then $f$ is monotonic

$
0
0

If $$\lim_{x\to\infty}f(x)=\infty,$$ then we can't conclude that there exists an $M$ where $f$ is monotonic on $[M,\infty)$ because $f(x)=\ln x+\sin x$ disproves that claim. What I want to know is, if my example is the "standard" counterexample, or maybe there is a more "simple" counterexample.


Viewing all articles
Browse latest Browse all 9589

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>