Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8490

A limit without invoking L'Hopital: $\lim_{x \to 0} \frac{x \cos x - \sin x}{x^2}$

$
0
0

The following limit

$$\ell=\lim_{x \rightarrow 0} \frac{x \cos x - \sin x}{x^2}$$

is a nice candidate for L'Hopital's Rule. This was given at a school before L'Hopital's Rule was covered. I wonder how we can skip the rule and use basic limits such as:

$$\lim_{x \rightarrow 0} \frac{\sin x}{x} \quad , \quad \lim_{x \rightarrow 0} \frac{\cos x -1}{x^2}$$


Viewing all articles
Browse latest Browse all 8490

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>