Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9517

Evaluate $\lim_{x \to \infty}x^4\left(\arctan\frac{2x^2+5}{x^2+1}-\arctan\frac{2x^2+7}{x^2+2}\right)$

$
0
0

Evaluate $$\lim_{x \to \infty}x^4\left(\arctan\frac{2x^2+5}{x^2+1}-\arctan\frac{2x^2+7}{x^2+2}\right)$$

My Solution

Denote$$f(t):=\arctan t.$$By Lagrange's Mean Value Theorem,we have$$f\left(\frac{2x^2+5}{x^2+1}\right)-f\left(\frac{2x^2+7}{x^2+2}\right)=f'(\xi)\left(\frac{2x^2+5}{x^2+1}-\frac{2x^2+7}{x^2+2}\right)=\frac{3}{(1+\xi^2)(x^2+1)(x^2+2)}$$where $$\frac{2x^2+5}{x^2+1}\lessgtr \xi \lessgtr \frac{2x^2+7}{x^2+2}.$$Here, applying the Squeeze Theorem, it's easy to see$$\lim_{x \to \infty}\xi=2.$$It follows that$$\lim_{x \to \infty}x^4\left(\arctan\frac{2x^2+5}{x^2+1}-\arctan\frac{2x^2+7}{x^2+2}\right)=\lim_{x \to \infty}\frac{3x^4}{(1+\xi^2)(x^2+1)(x^2+2)}=\frac{3}{5}.$$

Hope to see other solutions.THX.


Viewing all articles
Browse latest Browse all 9517

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>