let $f(x) = \dfrac {x-\sqrt x} {5x-4}$
prove using $\epsilon-\delta$ that $\lim_{x\to1} f(x) = 0$
I got it to -
let $\epsilon >0$.
choose $\delta = min(0.1 , \dfrac \epsilon 2)$
Than for all $\lvert x- 1\rvert < \delta$ :
$\lvert \dfrac {x-\sqrt x} {5x-4} \rvert $ = $\lvert \dfrac {x^2 - x} {(5x-4)(x+\sqrt x)} \rvert \le \dfrac {2\lvert x\rvert \lvert x -1\rvert} {\lvert x+\sqrt x\rvert}$$< 2\delta$ = $2\dfrac\epsilon 2$ = $\epsilon$
The part im not sure about is this :
$\dfrac {\lvert x\rvert } {\lvert x+\sqrt x\rvert} < 1$ for all $\lvert x- 1\rvert < \delta$
For some reason i think its too simple and that i might missed somthing here. would appreciate any clarifications.
Thanks.