Let $f:\mathbb{R}\to\mathbb{R}, f\in\mathrm {C}^{\infty }(\mathbb {R})$ and $f>0$. It is known that the functions $f, f^\prime, f^{\prime\prime}, f^{\prime\prime\prime}$ are absolutely Riemann integrable in the improper sense on $\mathbb {R}$. Prove that the function $\frac{(f^{\prime})^2}{f}$ is integrable on $\mathbb {R}$.
I have no idea how this prove. May be apply Limit Comparison Test? How proving $\lim_{x\to\infty} \frac{|f^{\prime}|}{f}<+\infty$?