Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8553

The Closure of a Subset of a Metric Space is the Union of the Subset and Its Boundary

$
0
0

I'm trying to prove the following statement. I can prove it with words, but I'm trying to see how the logic checks out.

Let $(\Omega ,d)$ be a metric space. Assume the following definitions of the set $E$, the closure$\bar{E}$, the derived set $E'$ (the set of all accumulation points of E), and the boundary $\partial E$:

$$E= \left \{ x\in\Omega :x \in E \right \}$$

$$\bar{E}=E\, \cup\, E' $$

$$E'=\left \{ x\in\Omega :(B_r(x)\setminus \left \{ x \right \})\cap E\neq \varnothing \;\; \forall r \in \mathbb{R}_+ \right \}$$

$$\partial E=\left \{ x\in\Omega :(B_r(x)\cap E\neq \varnothing\:) \wedge (B_r(x)\cap E^c\neq \varnothing\:) \;\; \forall r \in \mathbb{R}_+ \right \}$$

where $B_r(x)$ is the open ball of radius $r$ centered at $x \in \Omega $.

I want to prove that $\bar{E}=E \, \cup \, \partial E$ by seeing if I can use logic to derive the set $E \cup \partial E$ starting from the definition $\bar{E}=E\, \cup\, E' $, but I'm having a bit of trouble with the logic.

Using the idempotent property of intersection, I wrote

$$\bar{E}=E\, \cup\, E'= E\, \cup\,(E' \cap E')=E\, \cup\, \left \{ x\in\Omega :((B_r(x)\setminus \left \{ x \right \})\cap E\neq \varnothing) \wedge ((B_r(x)\setminus \left \{ x \right \})\cap E\neq \varnothing)) \;\; \forall r \in \mathbb{R}_+ \right \} $$

But I want

$$E \cup \partial E = E \cup \left \{ x\in\Omega :(B_r(x)\cap E\neq \varnothing\:) \wedge (B_r(x)\cap E^c\neq \varnothing\:) \;\; \forall r \in \mathbb{R}_+ \right \}$$

and I'm not exactly sure where to go with the logic. Part of me thinks that the right direction is to write

$$(B_r(x)\setminus \left \{ x \right \})\cap E=B_r(x)\cap \left \{ x \right \}^c\cap E=B_r(x)\cap (\Omega \setminus \left \{ x \right \})\cap E=B_r(x)\cap ((E\cup E^c) \cap \left \{ x \right \}^c)\cap E$$

and go from there since I know that one of the sets $E \cap \left \{ x \right \}^c $ and $E^c \cap \left \{ x \right \}^c$ has to be empty, but I don't think that really gets me anywhere.


Viewing all articles
Browse latest Browse all 8553

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>