Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8471

a limit for integrable functions

$
0
0

"If $f$ is integrable on $[0,A]$ for every $A>0$, and $\lim_{x\to\infty}f(x)=1$, then $\lim_{t\to 0^+} t\int_{0}^{\infty} e^{-tx}f(x)\: dx$ exists".

(I'm convinced it's true, some examples suggest that the answer is 1 for every function with these properties, but how to prove it?)


Viewing all articles
Browse latest Browse all 8471

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>