Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8471

Why is log-of-sum-of-exponentials $f(x)=\log\left(\sum_{i=1}^n e^ {x_i}\right)$ a convex function for $x \in\mathbb R^n$?

$
0
0

How to prove $f(x)=\log\left(\displaystyle\sum_{i=1}^n e^{x_i}\right)$ is a convex function?

EDIT1: for above function $f(x)$, following inequalities hold:

$$\max\{x_1,x_2,\ldots,x_n\}\leqslant f(x)\leqslant\max\{x_1,x_2,\ldots,x_n\}+\log n$$

and I have tried proving its convexity via definition of a convex function with above inequalities, but that didn't work.

EDIT2: I have posted my answers below.


Viewing all articles
Browse latest Browse all 8471

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>