Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8525

Integration of the product of a compact supported convolution

$
0
0

I know that in general case we have $$\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} f(s)g(t-s) ds dt = \left( \int_{-\infty}^{+\infty} f(t) dt \right) \left( \int_{-\infty}^{+\infty}g(t) dt \right) $$as the integration of a convolution.

But, is this result still true if the support is not the whole domain ? I mean,is the following equality true ?

$$\int_{0}^{1}\int_{0}^{1} f(s)g(t-s) ds dt = \left( \int_{0}^{1} f(t) dt \right) \left( \int_0^{1}g(t) dt \right) $$

If the result is wrong, do we have a simplified form for $\int_{0}^{1}\int_{0}^{1} f(s)g(t-s) ds dt$ ?


Viewing all articles
Browse latest Browse all 8525

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>