Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8829

Sobolev functions approximated by ridge functions

$
0
0

Let $f \in W^{k,2}(\mathbb{R}^d)$, a Sobolev space with smoothness $k$ and dimension $d$. We aim to approximate$f$ using ridge functions of the form $g(\mathbf{a}.\mathbf{x})$. Suppose the approximation error after using $n$ ridge functions is denoted by $E_n(f)$. Can we construct a class of $f$ having a certain smoothness, that the error $E_n(f)$ when approximated using ridge functions satisfies the exponential decay?$$E_n(f) \le C\exp(-\alpha n^{\frac{1}{d}})$$


Viewing all articles
Browse latest Browse all 8829

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>