Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9536

Inclusive Disjunction Problem

$
0
0

Given $(P:=3)$ and $x$ is an arbitrary element of the interval $S:= [1,\,5]$ except $3$, what would it be as $P \in S$?

Based on the given information above, verify that $(P < x) \lor (P > x)$, where $x$ is any arbitrary element except $3$ in $S$ and supposing $\lor$ is the inclusive disjunction?

This is my scratch work of proving:

Define $J := P < x,\space K := P > x,\space x≠3$.

  1. Take any $x \in[A,P]$ or
  2. Take any $x \in [P,B]$

Since from 1. $\left(J=\mathbf{TRUE}\right)\,\lor\,> \left(K=\mathbf{FALSE}\right)=\mathbf{TRUE}$, and from 2.$\left(J=\mathbf{FALSE}\right)\,\lor\,> \left(K=\mathbf{TRUUE}\right)=\mathbf{TRUE}$. Thus the statement istrue.

If there's any, I reckon there is, could you please kindly to point out the mistake and why it is wrong?

Thank you in advance.


Viewing all articles
Browse latest Browse all 9536

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>