Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8725

Making Formal Substitution to a Complex Power Series

$
0
0

This problem asks me to:

"Making the formal substitution $z-a=(z-z_0)+(z_0-a)$' in the power series $\sum_{i=0}^{\infty}A_n(z-a)^n$ and gathering like terms, obtain a series $\sum_{n=0}^{\infty}C_n(z-z_0)^n$ and expressions for its coefficients in terms of $A_k$ and and $(z_0-a)^k,k=0,1\cdots $"

Here is my attempt at approaching it:

$$\sum_{n=0}^{\infty}A_n(z-a)^n=\sum_{n=0}^{\infty}A_n[(z-z_0)+(z_0-a)]^n=\sum_{n=0}^{\infty}A_n\sum_{i=0}^n \binom{n}{i}(z_0-a)^{n-i}(z-z_0)^i$$

I have no clue of how to proceed after that, but it seems like that I need to gather the terms in each power.

Edit:

Following the hint of @angryavian:

$$I=\sum_{i=0}^\infty A_n(z-a)^n$$$$=\sum_{n=0}^\infty A_n\sum_{i=0}^n\binom{n}{i}(z_0-a)^{n-i}(z-z_0)^i$$$$=\sum_{i=0}^\infty A_n\sum_{i=0}^\infty\binom{n}{i}(z_0-a)^{n-i}(z-z_0)^i$$$$=\sum_{n=0}^{\infty}\sum_{i=0}^{\infty}A_n\binom{n}{i}(z_0-a)^{n-i}(z-z_0)^i$$$$=\sum_{i=0}^{\infty}\sum_{n=0}^{\infty}A_n\binom{n}{i}(z_0-a)^{n-i}(z-z_0)^i$$

$$\implies I=\sum_{i=0}^{\infty}C_i(z-z_0)^i,C_i=\sum_{n=0}^\infty A_n\binom{n}{i}(z_0-a)^{n-i}$$


Viewing all articles
Browse latest Browse all 8725

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>