Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9204

Folland Real Analysis Proposition 1.3

$
0
0

The following is a proposition and its proof from chapter 1 of Folland's Real Analysis.

1.3 Proposition. If $A$ is countable, then $\bigotimes_{\alpha\in A}\mathcal M_\alpha$ is the $\sigma$-algebra generated by $\left\{\prod_{\alpha\in A}E_\alpha:E_\alpha\in\mathcal M_\alpha\right\}$.

Proof. If $E_\alpha\in\mathcal M_\alpha$, then $\pi^{-1}_\alpha\left(E_\alpha\right)=\prod_{\beta\in A}E_\beta$ where $E_\beta=X$ for $\beta\neq\alpha$; on the other hand, $\prod_{\alpha\in A}E_\alpha=\bigcap_{\alpha\in A}\pi^{-1}_\alpha\left(E_\alpha\right)$. The result therefore follows from Lemma 1.1.

Where is the countability of $A$ invoked? I.e., how does this argument fail for $A$ uncountable?

Lemma 1.1 reads:

1.1 Lemma. If $\mathcal E\subset\mathcal M\left(\mathcal F\right)$ then $\mathcal M\left(\mathcal E\right)\subset\mathcal M\left(\mathcal F\right)$.

Here, $\mathcal M\left(\mathcal E\right)$ stands for the $\sigma$-algebra generated by $\mathcal E$.


Viewing all articles
Browse latest Browse all 9204

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>