The following is a proposition and its proof from chapter 1 of Folland's Real Analysis.
1.3 Proposition. If $A$ is countable, then $\bigotimes_{\alpha\in A}\mathcal M_\alpha$ is the $\sigma$-algebra generated by $\left\{\prod_{\alpha\in A}E_\alpha:E_\alpha\in\mathcal M_\alpha\right\}$.
Proof. If $E_\alpha\in\mathcal M_\alpha$, then $\pi^{-1}_\alpha\left(E_\alpha\right)=\prod_{\beta\in A}E_\beta$ where $E_\beta=X$ for $\beta\neq\alpha$; on the other hand, $\prod_{\alpha\in A}E_\alpha=\bigcap_{\alpha\in A}\pi^{-1}_\alpha\left(E_\alpha\right)$. The result therefore follows from Lemma 1.1.
Where is the countability of $A$ invoked? I.e., how does this argument fail for $A$ uncountable?
Lemma 1.1 reads:
1.1 Lemma. If $\mathcal E\subset\mathcal M\left(\mathcal F\right)$ then $\mathcal M\left(\mathcal E\right)\subset\mathcal M\left(\mathcal F\right)$.
Here, $\mathcal M\left(\mathcal E\right)$ stands for the $\sigma$-algebra generated by $\mathcal E$.