Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9736

Doubt in countability of a subset of real number

$
0
0

Let $S=\{x \in \mathbb{R} \mid x>1, \frac{1-x^4}{1-x^3}>22\}$ then $S $ is

  1. Empty
  2. Countably finite
  3. Countably infinite
  4. Uncountable.

My approach is:

$\frac{1-x^4}{1-x^3}>22, x>1$$\implies 1+x+x^2+x^3>22+22x+22x^2, x>1 \implies x^3-21x^2-21x-21>0,x>1 $

using the wavy curve method, $S$ is uncountable.

Option 4) is correct. Is my approach is correct?


Viewing all articles
Browse latest Browse all 9736

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>