Let $S=\{x \in \mathbb{R} \mid x>1, \frac{1-x^4}{1-x^3}>22\}$ then $S $ is
- Empty
- Countably finite
- Countably infinite
- Uncountable.
My approach is:
$\frac{1-x^4}{1-x^3}>22, x>1$$\implies 1+x+x^2+x^3>22+22x+22x^2, x>1 \implies x^3-21x^2-21x-21>0,x>1 $
using the wavy curve method, $S$ is uncountable.
Option 4) is correct. Is my approach is correct?