Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9629

Dilation invariant $ \mathcal{H}^k $ measurable set.

$
0
0

Assume that $ E\subset\mathbb{R}^n $ such that $ \mathcal{H}^k(E)>0 $ and for any compact set $ K\subset\mathbb{R}^n $, $ \mathcal{H}^k(E\cap K)<+\infty $, where $ \mathcal{H}^k $ denotes the $ k $-dimensional Hausdorff measure with $ k<n $. Suppose that $ E $ is dilation invariant, i.e. for any $ s>0 $, with $ sE=\{sx:x\in\mathbb{R}^n\} $, $ \mathcal{H}^{m-2}(E\Delta sE)=\mathcal{H}^{m-2}((E\backslash sE)\cup(sE\backslash E))=0 $. I want to ask that if there exists a $ k $-dimsional subsapce $ V $ such that $ \mathcal{H}^k(E\backslash V)=0 $?

Intuitively thinking this may true since if not the dialation invariant condition implies that $ \mathcal{H}^{k+1}(E)>0 $ but I do not know how to show it rigorously. Can you give me some hints or references?


Viewing all articles
Browse latest Browse all 9629

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>