Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9362

Prove $\lim\limits_{x \to +\infty } \frac{{f(x)}}{x} = \lim\limits_{x \to +\infty } f'(x)$ if both limits exist

$
0
0

Let $f:\Bbb R \to \Bbb R$ be differentiable, and $\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{x}$ (the slope of some asymptote) exists and the limit of the derivative $\mathop {\lim }\limits_{x \to + \infty } f'(x)$ exists as well, then show

$$\mathop \lim\limits_{x \to +\infty } \frac{{f(x)}}{x} = \lim \limits_{x \to +\infty } f'(x)$$

or

$$\lim\limits_{x \to +\infty } \frac{{f(x)}}{x} = \lim\limits_{x \to +\infty } \lim\limits_{h \to 0} \frac{{f(x + h) - f(x)}}{h}$$

This is intuitively true, but I don't know how to show it and I don't know how to deal with the mixed limit. Thanks!


Viewing all articles
Browse latest Browse all 9362

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>