Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9155

Continuity Argument?

$
0
0

Let $f(x)$ be a nonnegative, nondecreasing and continuous function defined on $[0,a]$. Assume that if $f(x)\le \sqrt\epsilon$ then $f(x)\le \frac{1}{2} \sqrt{\epsilon}$ holds for sufficiently small $\epsilon>0$. Then how can I prove that if $\epsilon$ is sufficiently small then $f(x)\le C\epsilon$ for all $x\in [0,a]$ with some positive constant $C$?


Viewing all articles
Browse latest Browse all 9155

Trending Articles