Q: Let $\left\{x_n\right\}_{n \geq 0}$ be a sequence in $\mathbb{R}$ such that $x_n \geq(-2)^n$ for every $n \in \mathbb{N}$. Which one is true?
(A) $\liminf \limits_{n \rightarrow \infty} x_n^2=\infty$
[B] $\limsup\limits _{n \rightarrow \infty} x_n=\infty$$\quad \leftarrow$
(C) $\liminf \limits_{n \rightarrow \infty} x_n=-\infty$
Can someone please me through their though process for answering this question quickly?