Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8476

I need to prove the continuity of $f(x)=\log x$ using a $\epsilon$-$\delta$ proof

$
0
0

I need to prove the continuity of $f(x)=\log x$ using a $\epsilon$-$\delta$ proof

These is what I have so far but am not sure how to continue

$|\log x-\log a| < \epsilon$

$\log a- \epsilon < \log x < \log a+ \epsilon$

$\frac{a}{e^\epsilon} < x < {a}e^\epsilon$

Any help is appreciated


Viewing all articles
Browse latest Browse all 8476

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>