Hi I am trying to solve this integral $$I:=\int_0^1 \log\left(\frac{1+ax}{1-ax}\right)\,\frac{{\rm d}x}{x\sqrt{1-x^2}}=\pi\arcsin\left(a\right),\qquad\left\vert a\right\vert \leq 1.$$It gives beautiful result for $a = 1$$$\int_0^1 \log\left(\frac{1+ x}{1-x}\right)\,\frac{{\rm d}x}{x\sqrt{1-x^2}}=\frac{\pi^2}{2}.$$I tried to write$$I=\int_0^1 \frac{\log(1+ax)}{x\sqrt{1-x^2}}dx-\int_0^1 \frac{\log(1-ax)}{x\sqrt{1-x^2}}dx$$If we work with one of these integrals we can write$$\sum_{n=1}^\infty \frac{(-1)^{n+1} a^n}{n}\int_0^1 \frac{x^{n-1}}{\sqrt{1-x^2}}dx-\sum_{n=1}^\infty \frac{a^n}{n}\int_0^1 \frac{x^{n-1}}{\sqrt{1-x^2}}dx,$$simplifying this I get an infinite sum of Gamma functions. which i'm not sure how to relate to the $\arcsin$ Thanks.
↧