Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9343

How can I prove $d(A,B)=0 \Rightarrow \partial A \cap \partial B \neq \emptyset$?

$
0
0

The problem is the following:

Let $(X,d)$ be a compact metric space, and $A$, $B \subseteq X$ disjoint sets such that

$d(A,B):=inf\{d(a,b):a \in A, b \in B\} = 0$

Prove that $\partial A \cap \partial B \neq \emptyset$

This was my reasoning: if $d(A,B)=0$ then $\exists a_n \subseteq A, b_n \subseteq B$ such that $D_n := \lim_{n\rightarrow\infty} d(a_n,b_n)=0$

As $X$ is compact, and $(a_n) \subseteq A \subseteq X$, then $\exists a_{n_k} \rightarrow a \in X$ (Is this $a$ particularly in $\overline{A}$ ?)

As $D_{n_k}$ is a subsequence of $D_n$, it tends to 0, but as $d(a,b_{n_k}) \leq d(a,a_{n_k})+d(a_{n_k},b_{n_k}) \rightarrow 0$, then $b_{n_k} \rightarrow a$

(which, if my suspicion is right, is in $\overline{A}$)

Then $a \in \overline{A} \cap \overline{B}$, and therefore $\overline{A} \cap \overline{B} \neq \emptyset$

I have two doubts:

  1. Is it ok to imply that $a\in \overline{A}$ or $a \in \overline{B}$?(same argument for both)
  2. Can I show that $\overline{A} \cap \overline{B} \neq \emptyset \Rightarrow \partial A \cap \partial B \neq \emptyset$ ?

Viewing all articles
Browse latest Browse all 9343


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>