Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8465

An improper integral : $\int_{0}^\infty {\ln(a^2+x^2)\over{b^2+x^2}}dx$

$
0
0

How to evaluate the following improper integral:$$\int_{0}^\infty {\ln(a^2+x^2)\over{b^2+x^2}}dx,$$ where $a,b>0$.


I tried to suppose $$f(a)=\int_0^\infty {\ln(a^2+x^2)\over{b^2+x^2}}dx,$$ based on the convergence theorem, and then I tried $${df(a)\over da}=\int_0^\infty {2a\over {(a^2+x^2)(b^2+x^2)}}dx = {\pi\over b(b+a)},$$and then $$f(a)={\pi\over b}\ln(b+a)+C,$$where $C$ is a constant, but I don't know how to find the constant $C$. Could anyone tell me that, and explain why? Or could anyone find other methods to evaluate the integral? If you could, please explain. Thanks.


Viewing all articles
Browse latest Browse all 8465

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>