Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8490

Prove that $\lim_{n \to \infty} \frac {1}{\sqrt n}=0$.

$
0
0

Prove that $\lim_{n \to \infty} \frac {1}{\sqrt n}=0$.

Attempy: $\forall \varepsilon>0 $, we have to find $M\in N$ such that $|\frac {1}{\sqrt n}-0|<\varepsilon$ for $n \ge M$.

Let $\varepsilon > \frac 1{\sqrt M}$. We can do this since $M \in N$, and note that $n\ge M \rightarrow \sqrt n \ge \sqrt M \rightarrow 1/\sqrt n \le 1/\sqrt M.$

Then, for $n \ge M$, we have that $|\frac {1}{\sqrt n}-0| = |\frac {1}{\sqrt n}| = \frac {1}{\sqrt n}$ (because $n\ge M \in N) = \frac 1{\sqrt M} <\varepsilon$.

Therefore, by definition of convergence, $\lim_{n \to \infty} \frac {1}{\sqrt n}=0$.

This is an assignment question, and marking criteria is quite strict. So, could you pick any minor mistake?

Thank you in advance.


Viewing all articles
Browse latest Browse all 8490

Trending Articles