Let $\{A_n\}$ be a nested collection of open intervals $(a_n,b_n)$. Must the intersection $\bigcap_{n=1}^\infty A_n$ be nonempty?
Briefly explain why is nonempty, or give an example where it is empty.
↧
For $\{A_n\}$ a nested collection of open intervals $(a_n,b_n)$, must $\bigcap_{n=1}^\infty A_n$ be nonempty? [closed]
↧