Let $f_2$ be integrable functions. I am trying to sum
$$\lim_{n\rightarrow\infty}\sum_{j=1}^{\infty}e^{ij}f_{2}\left(\frac{j}{n}\right)\frac{1}{n}$$
Under what condition can I write this as
$$\lim_{n\rightarrow\infty}\int_{0}^{\infty}e^{inx}f_2(x)dx$$
Is this justified in any sense?