Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9615

If $\lim\inf_{n\to\infty}(a_n+b_n)=\lim\inf_{n\to\infty}\ a_n+\lim\inf_{n\to\infty} b_n$ for any sequence$\{b_n\}$, does $\{a_n\}$ have to converge?

$
0
0

If $\underset{n\to\infty}{\lim\inf}(a_n+b_n)=\underset{n\to\infty}{\lim\inf}\ a_n+\underset{n\to\infty}{\lim\inf}\ b_n$ for any sequence $\{b_n\}$ in $\Bbb R$, does $\{a_n\}$ have to be convergent?


My attempt:

This statement is somewhat converse from the one proven here. I considered two sequences: $x_n=-a_n$ and $y_n=-b_n$. Then$$-\underset{n\to\infty}{\lim\inf}(a_n+b_n)=\underset{n\to\infty}{\lim\sup}(-a_n-b_n)=\underset{n\to\infty}{\lim\sup}(x_n+y_n)$$

Instead of the definition $$\underset{n\to\infty}{\lim\inf}\ x_n=\lim_{k\to\infty}\underset{n\ge k}{\inf}\ x_n,$$I used the fact if $\{x_n\}$ is bounded in $\Bbb R,\space \underset{n\to\infty}{\lim\inf}\ x_n$, as an accumulation point of $\{x_n\}$, is a limit of a convergent subsequence $\{x_{p_n}\}_n$ of $\{x_n\}$, i. e., $\lim\limits_{n\to\infty} x_{p_n}=\underset{n\to\infty}{\lim\inf}\ x_n$.

If the corresponding sequence $\{y_n\}$ is defined by $$y_n:=\begin{cases}\varepsilon,& n\in\{p_n\}\\0, &n\notin\{p_n\}\end{cases},$$ let $\varepsilon=\underset{n\to\infty}{\lim\sup}\ x_n-\underset{n\to\infty}{\lim\inf}\ x_n$. Then $\color{blue}{-\underset{n\to\infty}{\lim\inf}(a_n+b_n)\ge-\underset{n\to\infty}{\lim\inf}\ a_n (*)}$.

Since $x_{p_n}\overset{n\to\infty}{\to}\underset{n\to\infty}{\lim\inf}$,$$(\forall\varepsilon>0)(\exists n_\varepsilon\in\{p_n\})(n\in\{p_n\}\land n>n_\varepsilon)\implies\underbrace{(|x_n-\underset{n\to\infty}{\lim\inf}\ x_n|<\varepsilon)}_{\implies x_n<\underset{n\to\infty}{\lim\inf}\ x_n+\varepsilon}$$

For $\varepsilon=\underset{n\to\infty}{\lim\sup}\ x_n-\underset{n\to\infty}{\lim\inf}\ x_n$, we thenobtain $x_n<\underset{n\to\infty}{\lim\sup}\ x_n\tag 1$.

On the other hand, $\forall n\in\Bbb N$ sufficiently large, it holds $x_n<\underset{n\to\infty}{\lim\sup}\ x_n\tag 2+\varepsilon,$ so $(1)\land(2)\implies x_n+y_n<\underset{n\to\infty}{\lim\sup} x_n+\varepsilon$, and it should hold $\underset{n\to\infty}{\lim\sup}(x_n+y_n)\le\underset{n\to\infty}{\lim\sup} x_n$, but I'm not sure how to precisely justify it. This is equivalent to $\color{blue}{-\underset{n\to\infty}{\lim\inf}(a_n+b_n)\le-\underset{n\to\infty}{\lim\inf}\ a_n(**)}$.

Finally, $(*)\land(**)\implies\underset{n\to\infty}{\lim\inf}(a_n+b_n)=\underset{n\to\infty}{\lim\inf}\ a_n\implies\underset{n\to\infty}{\lim\sup}\ y_n=\varepsilon=0\implies\{x_n\}\text{ is convergent}$.


May I ask if my arguments are valid and how to improve my proof if it makes any sense?

Thank you in advance!


Viewing all articles
Browse latest Browse all 9615

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>