Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9615

Show that $\sup \bigcup_{n=1}^\infty A_n= \sup_{n \geq 1}\sup A_n$

$
0
0

Let $A_n \subseteq \mathbb{R}, \forall n \geq 1$. If $A= \bigcup_{n=1}^m A_n$, then we know that $\sup A = \max_{1 \leq n \leq m}\sup A_n$.

How about the infinite case, would be true that:

  • $\sup A = \sup_{n \geq 1}\sup A_n$, if $A= \bigcup_{n=1}^\infty A_n$?

Viewing all articles
Browse latest Browse all 9615

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>