Please show me the existence of the limit clearly
$$\lim_{\large(h,k)\to (0,0)}\dfrac{\vert hk\vert ^{\alpha} \log(h^2+k^2)}{\sqrt {h^2+k^2}} =0,$$
for $\alpha > \frac12$.
Please show me the existence of the limit clearly
$$\lim_{\large(h,k)\to (0,0)}\dfrac{\vert hk\vert ^{\alpha} \log(h^2+k^2)}{\sqrt {h^2+k^2}} =0,$$
for $\alpha > \frac12$.