Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8509

N-Functions (Nice Young functions)

$
0
0

A mapping $\Phi:[0,\infty)\to[0,\infty)$ is termed an N-function (nice Young function) if

(i) $\Phi$ is continuous on $[0,\infty)$;

(ii) $\Phi$ is convex on $[0,\infty)$;

(iii) $\lim\limits_{t \rightarrow 0}\frac{\Phi(t)}{t}=0$;

(iv)$\lim\limits_{t\rightarrow\infty}\frac{\Phi(t)}{t}=\infty$.

In the book "Robert A. Adams, John J. F. Fournier, Sobolev Spaces" the authors claim that this definition is equivalent to $\Phi$ has an integral representation such that $$\Phi(t)=\int_0^t\varphi(s)ds,\quad t\in [0,\infty),$$where $\varphi$ be a real valued function defined on $[0,\infty)$ and having the following properties

(i*) $\varphi(0)=0$, $\varphi(t)>0$ if $t>0$, $\lim\limits_{t\rightarrow\infty}\varphi(t)=\infty$;

(ii*) $\varphi$ is nondecreasing;

(iii*) $\varphi$ is right continuous.

My first question is : We know that a convex function on an open inerval is continuous. Using this fact and conditions (ii) and (iii) can we write condition (i) as $\lim\limits_{t \rightarrow 0^+}\Phi(t)=\Phi(0)=0$?

My second question is : The function $\Phi(t)=\left\{\begin{array}{ccc}0& , & t\leq 1 \\t\log t&,& t>1\end{array}\right.$ is an N-function or not? It seems like it satisfies the all conditions (i)-(iv). But according to second definition $\varphi(t)=\left\{\begin{array}{ccc}0& , & t< 1 \\\log t+1&,& t\geq1\end{array}\right.$ and it doesn't satisfy the condition (i*). Where is the mistake?


Viewing all articles
Browse latest Browse all 8509

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>