Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9555

Limit of $4^n\cdot (x_n-2)$, where $x_{n+1}=\sqrt{x_n+2}$

$
0
0

Let’s define a sequence $x_1=4$ and $x_{n+1}=\sqrt{x_n+2}$ for $n\geq 2$. We know that this series converges to 2. But what is the limit of $4^n\cdot (x_n-2)$?

I know that $4^n\cdot (x_n-2)$ is a positive, decreasing sequence hence it converges, I just don’t know how to get the limit.


Viewing all articles
Browse latest Browse all 9555

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>