Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8636

Borel sigma algebra of extended Real Line

$
0
0

I'm trying to prove the following (where $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty \}$):

The Borel sigma algebra $\mathcal{B}(\overline{\mathbb{R}})$ is the sigma algebra generated by open sets in $\overline{\mathbb{R}}$, where $(\overline{\mathbb{R}}, \arctan)$ is a metric space. Prove that $\mathcal{B}(\overline{\mathbb{R}}) = \{ E \subset \overline{\mathbb{R}}: E \cap \mathbb{R} \in \mathcal{B}(\mathbb{R})\}$.

I think I've managed to do $\sigma(\{ \text{open sets in } \overline{\mathbb{R}}\})\subset \{ E \subset \overline{\mathbb{R}}: E \cap \mathbb{R} \in \mathcal{B}(\mathbb{R})\}$, but I'm not so sure it is correct. Moreover, I'm very stuck on $\{ E \subset \overline{\mathbb{R}}: E \cap \mathbb{R} \in \mathcal{B}(\mathbb{R})\} \subset \sigma(\{ \text{open sets in } \overline{\mathbb{R}}\})$. Does anyone have a good solution for this?

(There is a similar answer in Topology and Borel sets of extended real line, but I'm looking for an answer without using a Topology explicitly. This answer doesn't achieve that.)


Viewing all articles
Browse latest Browse all 8636

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>