Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9629

Determine whether $\int_0^{\infty} \frac{\arctan(x)}{e^x - e}dx$ converges or diverges.

$
0
0

Determine whether $\int_0^{\infty} \frac{\arctan(x)}{e^x - e}dx$ converges or diverges.

Attempt: I know that $\arctan x\leq \pi/2$, but how can I proceed from here? I also split the integral as:

$\int_0^{\infty} \frac{\arctan(x)}{e^x - e}dx$=$\int_0^{1} \frac{\arctan(x)}{e^x - e}dx$+$\int_1^{\infty} \frac{\arctan(x)}{e^x - e}dx$


Viewing all articles
Browse latest Browse all 9629

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>