Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9615

Prove that $\operatorname{cond}(f ) = \|A^{−1}\|\|A\|.$

$
0
0

Question:

I am trying to prove that the condition number of a function $ f(x) = Ax $ is given by:

$$\text{cond}(f) = \|A^{-1}\|\|A\|$$

The definition of the condition number of a function ( f ) is:

$$ \limsup_{\|\Delta x\| \to 0} \frac{\frac{\|\Delta y\|}{\|y\|}}{\frac{\|\Delta x\|}{\|x\|}} $$

Starting from this definition, I have:

$$ \text{cond}(f) = \limsup_{\|\Delta x\| \to 0} \frac{\frac{\|A\Delta x\|}{\|Ax\|}}{\frac{\|\Delta x\|}{\|x\|}} $$

Then, I proceed with the following simplifications:

$$ \limsup_{\|\Delta x\| \to 0} \frac{\|A\|\|\Delta x\|}{\|A\|\|x\|}$$

Next, eliminating ( x ), I arrive at:

$$ \limsup_{\|\Delta x\| \to 0} \frac{\|A\|}{\|A\|}$$

Finally, I get:

$$ \text{cond}(f) = \|A^{-1}\|\|A\|$$However, I feel like something is wrong, but I’m not sure what the exact issue is. Could anyone help me identify where my reasoning or steps might be incorrect?


Viewing all articles
Browse latest Browse all 9615

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>