Question:
I am trying to prove that the condition number of a function $ f(x) = Ax $ is given by:
$$\text{cond}(f) = \|A^{-1}\|\|A\|$$
The definition of the condition number of a function ( f ) is:
$$ \limsup_{\|\Delta x\| \to 0} \frac{\frac{\|\Delta y\|}{\|y\|}}{\frac{\|\Delta x\|}{\|x\|}} $$
Starting from this definition, I have:
$$ \text{cond}(f) = \limsup_{\|\Delta x\| \to 0} \frac{\frac{\|A\Delta x\|}{\|Ax\|}}{\frac{\|\Delta x\|}{\|x\|}} $$
Then, I proceed with the following simplifications:
$$ \limsup_{\|\Delta x\| \to 0} \frac{\|A\|\|\Delta x\|}{\|A\|\|x\|}$$
Next, eliminating ( x ), I arrive at:
$$ \limsup_{\|\Delta x\| \to 0} \frac{\|A\|}{\|A\|}$$
Finally, I get:
$$ \text{cond}(f) = \|A^{-1}\|\|A\|$$However, I feel like something is wrong, but I’m not sure what the exact issue is. Could anyone help me identify where my reasoning or steps might be incorrect?