Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9716

Find the value of integration: $\lim_{n\to\infty} \int_{[0,\infty)}{\frac{x}{1+x^{n}}\, \mathrm{d}x}$

$
0
0

$$\lim_{n\to\infty}\int_0^{\infty}{\frac{x}{1+x^{n}}\,\mathrm dx}$$Consider the integral$$\int_{0}^{\infty} \frac{x}{1+x^n} \,\mathrm dx$$

This is an improper integral, but we can solve it using substitution or integration by parts.

Let $u = x^n$, then $\mathrm du = nx^{n-1}\,\mathrm dx$.

$$\int_{0}^{\infty} \frac{x}{1+x^n} \,\mathrm dx = \frac{1}{n} \int_{0}^{\infty} \frac{1}{1+u} \, \mathrm du$$

Now, integrate:

$$\frac{1}{n} \int_{0}^{\infty} \frac{1}{1+u} \,\mathrm du = \left.\frac{1}{n} \ln(1+u) \right|_{0}^{\infty}$$

Apply the limit as $n\to\infty$, the integral approaches:

$$\lim_{n\to\infty}\left. \frac{1}{n} \ln(1+u) \right|_{0}^{\infty}=\lim_{n\to\infty} \frac{\ln(1+\infty)-\ln(1)}{n}$$

Simplify. Since $\ln(1+\infty)=\infty$, we have:

$$\lim_{n\to\infty} \frac{\infty}{n}=\lim_{n\to\infty} \frac{1}{n} \cdot \infty=0$$

The final answer is: $\boxed{0}$. Is my solution correct?


Viewing all articles
Browse latest Browse all 9716

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>