Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8476

$\displaystyle\lim_{x\to\infty}f(x)=0$ and $f'(x)\geq0$, then $\displaystyle\lim_{x\to\infty}f'(x)=0$?

$
0
0

Is it correct to say that if a function $f$ of class $C^1$$\displaystyle\lim_{x\to\infty}f(x)=0$ and $f'(x)\geq0$,then $\displaystyle\lim_{x\to\infty}f'(x)=0$?

I attempted to demonstrate this problem using proof by contradiction. Specifically, assuming that $f'(x)$ does not converge to $0$.It implies$\exists \varepsilon>0,\forall M>0,\exists x(x\geq M \ \text{and} \ f'(x)\geq \varepsilon)$.$f$ is class $C^1$, then

  • a sequence of disjoint closed intervals $[a_1,b_1],[a_2,b_2],\cdots$ where $f'(x)\geq \dfrac{\varepsilon}{2}$ exists.
  • $f(x)=\displaystyle\int_a^xf'(t)dt+f(a)$

I tried using these two, attempting to demonstrate that $f$ has a positive lower bound, but I couldn't.


Viewing all articles
Browse latest Browse all 8476

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>