How to prove the Minkowski inequality (triangular) using Hölder and Cauchy-Schwarz for every space?
$\|f+g\|_p\leq \|f\|_p+\|g\|_p$
for$1\leq p \leq \infty$
How to prove the Minkowski inequality (triangular) using Hölder and Cauchy-Schwarz for every space?
$\|f+g\|_p\leq \|f\|_p+\|g\|_p$
for$1\leq p \leq \infty$